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Research on the Mining of Precise Personalized Learning Path in Age of Big Data:
Analysis of Group Learning Behaviors Based on AprioriAll

JIANG Qiang', ZHAO Wei', LI Song’>, WANG Pengjiao’
(1.School of Information Science and Technology, Northeast Normal University, Changchun Jilin 130117;
2.Education Department, National Open University, Beijing 100039;
3.School of Computer Science and Technology, Liaoning Normal University, Dalian Liaoning 116081)

[Abstract] Under the digital environment, learning means collecting, converging, storing, sharing and
creating information, involves both individual learning behavior and group behaviors, and as a result,
affects individual knowledge building. In age of big data, based on AprioriAll algorithm, this study explores
the learning behavior trajectory of the same group with the same or similar learning preference and
knowledge level, and generates precise personalized learning path according to learners” characteristics and
learning media type, the level of understanding, the matching calculation of difficulty level, which can
provide new ideas for differentiating teaching. Finally, the experimental study is adopted and the learning
efficiency and satisfaction are investigated through the scatter diagram and directed acyclic graph. The

results indicate that the accurate personalized learning path can meet learners” learning needs, provide
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them effective guidance, stimulate their interest in learning, enhance their learning motivations and
promote their personalized development.
[Keywords]| Personalized Learning; Precise Learning Path; AprioriAll Algorithm; Big Data; Group

Learning Behaviors
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Research on Personalized Design of Learning Analytics Dashboard

ZHANG Qi', WU Fati?
(1.School of Smart Education, Jiangsu Normal University, Xuzhou Jiangsu 221116;
2.School of Educational Technology, Beijing Normal University, Beijing 100875)

[Abstract] Learning Analytics Dashboard (LAD), the core of data—driven instruction, is suitable for
learners with different characteristics, and needs to solve the conflict between university and individuality
presented by data. This study focuses on the individualized design of LAD and aims to present
personalized indicators for learners with different personalities through providing the core indicators. This
study uses "pattern recognition technology" to judge learners” personalities, establishes a static region and
an adaptive region on based on the replication of the adaptive, and designs adaptive contents including "data
indicators" and "front tools". The perceptual comparison of the design prototype verifies its rationality. The
quasi—experimental study of learning behavior level and exam results show that LAD magnifies learners”
perceptions through appropriate presentation, and enhances their specific behaviors. By pushing the data
matching learners” personalities, their motivations are strengthened, which is good for the achievement of
learning goals.

[Keywords] Learning Analytics Dashboard; Learning Analytics Tool; Adaptive User Interface;

Personality; Design Research



